URAM-Marketing

Unité de Recherche et d'Applications en Marketing

L’intention de réservation en ligne d’un produit touristique : Une comparaison entre deux modèles : TAM versus TPB


Abstract:

Cette étude se focalise sur la détermination du meilleur modèle permettant l’explication de l’intention de réservation en ligne des produits touristiques, en comparant deux modèles, à savoir le modèle TAM (Technology Acceptance Model) et le modèle TPB (Theory of Planned Behaviour). Les données ont été collectées auprès de 158 personnes puis analysées à travers la régression linéaire multiple. Les résultats de  cette recherche confirment que les deux modèles expliquent l’intention de réservation en ligne, mais à différents degrés. Nous concluons cette recherche par les limites et proposons des voies futures de recherche.

Read: 228 views

Download Article

FileFile sizeDownloads
pdf uram-2013-p31-44866 kB 261

References

  1. Ajzen I. et Fishbein M. (1975), Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Reading, MA: Addison-Wesley.
  2. Ajzen, I. et Fishbein, M. (1980), Understanding Attitude and Predicting Social Behavior, Prentice-Hall, New Jersey
  3. Ajzen I. (1991), The Theory of Planned Behavior, Organizational behavior and human decision processes, 50, 179-211
  4. Aldás-Manzano J., Ruiz-Mafé C. et Sanz-Blas S. (2009), Drivers and barriers to online airline ticket purchasing, Journal of Air Transport Management, 15, 294-298
  5. Bagozzi R.P. et Yi Y. (1989), The Degree of Intention Formation as a Moderator of the Attitude-Behavior Relationship, Social Psychology Quarterly, 52, 4, 266-279
  6. Brenner W., Keil M. et Straub D. (1997), Testing the technology acceptance model across cultures: A three country study, Information & Management, 33, 1-11
  7. Brereton P., Budgen D., Charters S., Kitchenham B. et Turner M. (2010), Does the technology acceptance model predict actual use? A systematic literature review, Information and Software Technology, 52, 5, 463-479
  8. Buhalis D. (1998), Strategic use of information technologies in the tourism industry, Tourism Management, 19, 5, 409-421
  9. Buhalis D., Ma J.X. et Song H. (2003), ICTs and Internet adoption in China’s tourism industry, International Journal of Information Management, 23, 451-467
  10. Chuan-Chuan Lin J., Lu H. (2000), Towards an understanding of the behavioural intention to use a web site, International Journal of Information Management, 20, 197-208
  11. Chen J-L., Liao C. et Yen D.C. (2007), Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model, Computers in Human Behavior, 23, 2804-2822
  12. Chen Y-C., Shang R-A. et Shen L. (2005), Extrinsic versus intrinsic motivations for consumers to shop on-line, Information & Management, 42, 401–413
  13. Cheng J.M-S., Lou G-C. et Sheen G-J. (2006), Consumer acceptance of the internet as a channel of distribution in Taiwan- a channel function perspective, Technovation, 26, 856-864
  14. Davis F.D., (1989), « Perceived usefulness, perceived ease of use, and user acceptance of information technology », MIS Quarterly, 319- 340
  15. Davis F.D., Bagozzi R.P., Warshaw P.R, (1989), « User acceptance of computer technology: A comparison of two theoretical models », Management science, n° 8, Vol. 35, 982-1003
  16. Davis F.D. et Venkatesh V. (2000), A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, 46, 2, 186-204
  17. Divett M.J. et Henderson R. (2003), Perceived usefulness, ease of use and electronic supermarket use, International Journal of Human-Computer Studies, 59, 383–395
  18. Ermy S.P, Mohd Salehuddin M.Z., Robert E., Yusliza M.Y. et Zikri M. (2009), Individual Differences, Perceived Ease of Use, and Perceived Usefulness in the E-Library Usage, Computer and information science, 2, 1, 76-83
  19. He J. et King W.R. (2006), A meta-analysis of the technology acceptance model, Information & Management, 43, 740-755
  20. Huh H.J., Kim T.T. et Law R. (2009), A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels, International Journal of Hospitality Management, 28, 121–134
  21. Hwang K.P., Lin W-B et Wang M-K. (2010), The combined model of influencing on-line consumer behavior, Expert Systems with Applications, 37, 3236–3247
  22. Karjaluoto H., Pahnila S., Pikkarainen K. et Pikkarainen T. (2004), Consumer acceptance of online banking, Internet Research, 14, 3, 224–235
  23. Kim D.J., Kim W.G. et Ma X. (2006), Determinants of Chinese hotel customers’ e-satisfaction and purchase intentions, Tourism Management, 27, 890–900
  24. Kim H.-B., Kim T. et Shin S.W. (2009), Modeling roles of subjective norms and e Trust in customers’ acceptance of airline B2C e Commerce websites, Tourism Management, 30, 266–277
  25. Kim Y-G. et Moon J-W. (2001), Extending the TAM for a World-Wide-Web context, Information & Management, 38, 21-230
  26. Klopping I.M. et McKinney E. (2004), Extending the Technology Acceptance Model and the Task-Technology Fit Model to Consumer E-Commerce, Information Technology, Learning, and Performance Journal, 22, 1, 35- 48
  27. Lee M-C. (2009), Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit, Electronic Commerce Research and Applications, 8, 130–141
  28. Lin H-F. (2007), Predicting consumer intentions to shop online: An empirical test of competing theories, Electronic Commerce Research and Applications, 6, 433-442
  29. Lu Y., Wang B. et Zhou T. (2009), Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory, Computers in Human Behavior, 25,  29–39
  30. Mathieson K. (1991), Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior, Information Systems Research, 2, 3, 173-191
  31. Notani A.S. (1998), Moderators of Perceived Behavioral Control’s Predictiveness in the Theory of Planned Behavior: A Meta-Analysis, Journal of Consumer Psychology, 7, 3, 247-271
  32. Petr C. (2009), E-tourist behavior: The influence of IT on consumer behavior in a tourism context, in Handbook of Tourist Behavior: Theory & Practice, (eds.) Metin Kozak & Alain Decrop, Edition: Routledge, 26 pages
  33. Sheppard B.H., Hartwick J. et Warshaw P.R. (1988), The Theory of Reasoned Action: A Meta-Analysis of Past Research with Recommendations for Modifications and Future Research, The Journal of Consumer Research, 15, 3, 325-343
  34. Shih H-P. (2004 b), Extended technology acceptance model of Internet utilization behavior, Information & Management, 41,719-729
  35. Subramanian G.H. (1994), A replication of perceived usefulness and perceived ease of use measurement, Decision Sciences, 25, 5/6, 863-874
  36. Taylor S. et Todd P. A. (1995), Understanding information technology usage: A test of competing models, Information System Research, 6, 2, 144-176
  37. Venkatesh V. (1999), Creation of Favorable User Perceptions: Exploring the Role of Intrinsic Motivation, MIS Quarterly, 23, 2, 239-260
  38. Venkatesh V. (2000), Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model, Information Systems Research, 11, 4, 342–365
  39. Vijayasarathy L.R. (2004), Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model, Information & Management, 41, 747-762
MSC-URAM Proceedings (URAM, FSEGT, UTM) © 2016